Small conductance Ca2+-activated K+ channels and calmodulin.

نویسندگان

  • James Maylie
  • Chris T Bond
  • Paco S Herson
  • Wei-Sheng Lee
  • John P Adelman
چکیده

Small conductance Ca(2+)-activated K(+) channels (SK channels) contribute to the long lasting afterhyperpolarization (AHP) that follows an action potential in many central neurones. The biophysical and pharmacological attributes of cloned SK channels strongly suggest that one or more of them underlie the medium component of the AHP that regulates interspike interval and plays an important role in setting tonic firing frequency. The cloned SK channels comprise a distinct subfamily of K(+) channels. Heterologously expressed SK channels recapitulate the biophysical and pharmacological hallmarks of native SK channels, being gated solely by intracellular Ca(2+) ions with no voltage dependence to their gating, small unitary conductance values and sensitivity to the bee venom peptide toxin, apamin. Molecular, biochemical and electrophysiological studies have revealed that Ca(2+) gating in SK channels is due to heteromeric assembly of the SK alpha pore-forming subunits with calmodulin (CaM). Ca(2+) binding to the N-terminal E-F hands of CaM is responsible for SK channel gating. Crystallographic studies suggest that SK channels gate as a dimer-of-dimers, and that the physical gate of SK channels resides at or near the selectivity filter of the channels. In addition, Ca(2+)-independent interactions between the SK channel alpha subunits and CaM are necessary for proper membrane trafficking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Kinase CK2 Is Coassembled with Small Conductance Ca2+-Activated K+ Channels and Regulates Channel Gating

Small conductance Ca(2+)-activated K+ channels (SK channels) couple the membrane potential to fluctuations in intracellular Ca2+ concentration in many types of cells. SK channels are gated by Ca2+ ions via calmodulin that is constitutively bound to the intracellular C terminus of the channels and serves as the Ca2+ sensor. Here we show that, in addition, the cytoplasmic N and C termini of the c...

متن کامل

Neurotransmitter Modulation of Small-Conductance Ca2+-Activated K+ Channels by Regulation of Ca2+ Gating

Small-conductance Ca2+-activated K+ (SK) channels are widely expressed in neuronal tissues where they underlie post-spike hyperpolarizations, regulate spike-frequency adaptation, and shape synaptic responses. SK channels constitutively interact with calmodulin (CaM), which serves as Ca2+ sensor, and with protein kinase CK2 and protein phosphatase 2A, which modulate their Ca2+ gating. By recordi...

متن کامل

Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.

Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1,...

متن کامل

Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes.

Small conductance Ca2+-activated K+ channels (SK channels) are complexes of four alpha pore-forming subunits each bound by calmodulin (CaM) that mediate Ca2+ gating. Proteomic analysis indicated that SK2 channels also bind protein kinase CK2 (CK2) and protein phosphatase 2A (PP2A). Coexpression of SK2 with the CaM phosphorylation surrogate CaM(T80D) suggested that the apparent Ca2+ sensitivity ...

متن کامل

The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 554 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004